Esco1 Acetylates Cohesin via a Mechanism Different from That of Esco2
نویسندگان
چکیده
Sister chromatid cohesion is mediated by cohesin and is essential for accurate chromosome segregation. The cohesin subunits SMC1, SMC3, and Rad21 form a tripartite ring within which sister chromatids are thought to be entrapped. This event requires the acetylation of SMC3 and the association of sororin with cohesin by the acetyltransferases Esco1 and Esco2 in humans, but the functional mechanisms of these acetyltransferases remain elusive. Here, we showed that Esco1 requires Pds5, a cohesin regulatory subunit bound to Rad21, to form cohesion via SMC3 acetylation and the stabilization of the chromatin association of sororin, whereas Esco2 function was not affected by Pds5 depletion. Consistent with the functional link between Esco1 and Pds5, Pds5 interacted exclusively with Esco1, and this interaction was dependent on a unique and conserved Esco1 domain. Crucially, this interaction was essential for SMC3 acetylation and sister chromatid cohesion. Esco1 localized to cohesin localization sites on chromosomes throughout interphase in a manner that required the Esco1-Pds5 interaction, and it could acetylate SMC3 before and after DNA replication. These results indicate that Esco1 acetylates SMC3 via a mechanism different from that of Esco2. We propose that, by interacting with a unique domain of Esco1, Pds5 recruits Esco1 to chromatin-bound cohesin complexes to form cohesion. Furthermore, Esco1 acetylates SMC3 independently of DNA replication.
منابع مشابه
Cohesin recruits the Esco1 acetyltransferase genome wide to repress transcription and promote cohesion in somatic cells.
The cohesin complex links DNA molecules and plays key roles in the organization, expression, repair, and segregation of eukaryotic genomes. In vertebrates the Esco1 and Esco2 acetyltransferases both modify cohesin's Smc3 subunit to establish sister chromatid cohesion during S phase, but differ in their N-terminal domains and expression during development and across the cell cycle. Here we show ...
متن کاملCohesin acetyltransferase Esco2 is a cell viability factor and is required for cohesion in pericentric heterochromatin
Sister chromatid cohesion, mediated by cohesin and regulated by Sororin, is essential for chromosome segregation. In mammalian cells, cohesion establishment and Sororin recruitment to chromatin-bound cohesin depends on the acetyltransferases Esco1 and Esco2. Mutations in Esco2 cause Roberts syndrome, a developmental disease in which mitotic chromosomes have a 'railroad' track morphology. Here, ...
متن کاملCohesin acetyltransferase Esco2 regulates SAC and kinetochore functions via maintaining H4K16 acetylation during mouse oocyte meiosis
Sister chromatid cohesion, mediated by cohesin complex and established by the acetyltransferases Esco1 and Esco2, is essential for faithful chromosome segregation. Mutations in Esco2 cause Roberts syndrome, a developmental disease characterized by severe prenatal retardation as well as limb and facial abnormalities. However, its exact roles during oocyte meiosis have not clearly defined. Here, ...
متن کاملSororin actively maintains sister chromatid cohesion
Cohesion between sister chromatids is established during DNA replication but needs to be maintained to enable proper chromosome-spindle attachments in mitosis or meiosis. Cohesion is mediated by cohesin, but also depends on cohesin acetylation and sororin. Sororin contributes to cohesion by stabilizing cohesin on DNA. Sororin achieves this by inhibiting WAPL, which otherwise releases cohesin fr...
متن کاملSororin actively maintains sister chromatid€cohesion
Cohesion between sister chromatids is established during DNA replication but needs to be maintained to enable proper chromosome–spindle attachments in mitosis or meiosis. Cohesion is mediated by cohesin, but also depends on cohesin acetylation and sororin. Sororin contributes to cohesion by stabilizing cohesin on DNA. Sororin achieves this by inhibiting WAPL, which otherwise releases cohesin fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 25 شماره
صفحات -
تاریخ انتشار 2015